Finding frequent items over sliding windows with constant update time
نویسندگان
چکیده
a r t i c l e i n f o a b s t r a c t In this paper, we consider the problem of finding-approximate frequent items over a sliding window of size N. A recent work by Lee and Ting (2006) [7] solves the problem by giving an algorithm that supports O (1) query and update time, and uses O (1) space. Their query time and memory usage are essentially optimal, but the update time is not. We give a new algorithm that supports O (1) update time with high probability while maintaining the query time and memory usage as O (1).
منابع مشابه
Mining Frequent Patterns in Uncertain and Relational Data Streams using the Landmark Windows
Todays, in many modern applications, we search for frequent and repeating patterns in the analyzed data sets. In this search, we look for patterns that frequently appear in data set and mark them as frequent patterns to enable users to make decisions based on these discoveries. Most algorithms presented in the context of data stream mining and frequent pattern detection, work either on uncertai...
متن کاملFinding Frequent Items over General Update Streams
We present novel space and time-efficient algorithms for finding frequent items over general update streams. Our algorithms are based on a novel adaptation of the popular dyadic intervals method for finding frequent items. The algorithms improve upon existing algorithms in both theory and practice.
متن کاملSubmodular Optimization Over Sliding Windows
Maximizing submodular functions under cardinality constraints lies at the core of numerous data mining and machine learning applications, including data diversification, data summarization, and coverage problems. In this work, we study this question in the context of data streams, where elements arrive one at a time, and we want to design lowmemory and fast update-time algorithms that maintain ...
متن کاملIncremental updates of closed frequent itemsets over continuous data streams
Online mining of closed frequent itemsets over streaming data is one of the most important issues in mining data streams. In this paper, we propose an efficient one-pass algorithm, NewMoment to maintain the set of closed frequent itemsets in data streams with a transaction-sensitive sliding window. An effective bit-sequence representation of items is used in the proposed algorithm to reduce the...
متن کاملMining Maximum Frequent Item Sets Over Data Streams Using Transaction Sliding Window Techniques
As we know that the online mining of streaming data is one of the most important issues in data mining. In this paper, we proposed an efficient one.frequent item sets over a transaction-sensitive sliding window), to mine the set of all frequent item sets in data streams with a transaction-sensitive sliding window. An effective bit-sequence representation of items is used in the proposed algorit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Process. Lett.
دوره 110 شماره
صفحات -
تاریخ انتشار 2010